
# Arduino 9 Axes Motion Shield

CO-DEVELOPED WITH







#### Overview

The Arduino 9 Axes Motion Shield is based on the BNO055 absolute orientation sensor (datasheet) from Bosch Sensortec GmbH.

The BNO055 is a System in Package (SiP), integrating a triaxial 14-bit accelerometer, a triaxial 16-bit gyroscope with a range of  $\pm 2000$  degrees per second, a triaxial geomagnetic sensor and a 32-bit microcontroller running the BSX3.0 FusionLib software.

The sensor features three-dimensional acceleration, yaw rate and magnetic field strength data each in 3 perpendicular axes.

It also provides the sensor fusion signals such as

- Quaternion
- Euler angles
- Rotation vector
- Linear acceleration
- Gravity vector

In addition, it incorporates an intelligent interrupt engine, which allows for triggering interrupts based on

- slow or no motion recognition
- any motion (slope) detection
- high-g-detection.

The shield is TinkerKit compatible, which means you can quickly create projects by plugging TinkerKit modules to the board.

#### **Summary**

Operating Voltage 5V Power Consumption 50mW

## Schematic & Reference Design

EAGLE files: arduino 9AxesShield-reference-design.zip

Schematic: arduino\_9AxesShield-schematic.pdf

#### Power

The Arduino 9 Axes Motion Shield has no power jack and is powered only when attached to an Arduino board.

## Input and Output

The shield features several TinkerKit input/output and communication interfaces. Connecting TinkerKit modules can simplify the creation of a project or a prototype.

The on-board connectors are:

- 2 TinkerKit Inputs: IN2 and IN3 (in white), these connectors are routed to the Arduino A2 and A3 analog input pins.
- **2 TinkerKit Outputs**: OUT5 and OUT6 (in orange), these connectors are routed to the Arduino PWM outputs on pins 5 and 6.
- **2 TinkerKit TWI**: these connectors (4-pin in white) are routed on the Arduino TWI interface. Both connect to the same TWI interface to allow you to create a chain of TWI devices.

## **Physical Characteristics**

The maximum length and width of the 9 Axes Motion Shield PCB are 2.7 and 2.1 inches respectively. Four screw holes allow the board to be attached to a surface or case. Note that the distance between digital pins 7 and 8 is 160 mil (0.16"), not an even multiple of the 100 mil spacing of the other pins.

#### Compatibility

The Arduino 9 Axes Motion Shield is compatible with Uno, Yùn, Leonardo, Ethernet, Mega and Due boards. When using the Arduino 9 Axes Motion Shield, be sure to solder the Interrupt bridge and Reset bridge in the correct position depending on the board used. See table:

| BOARD            | INTERRUPT PIN | RESET PIN |
|------------------|---------------|-----------|
| Arduino Uno      | D2            | D4        |
| Arduino Leonardo | D7            | D4        |
| Arduino Yun      | D7            | D4        |
| Arduino Ethernet | D2            | D4        |

| Arduino Due  | D2 | D4 |
|--------------|----|----|
| Arduino Mega | D2 | D4 |

For example to use 9 Axes Motion Shield with ArduinoUNO solder the Interrupt bridge on the pin D2.



# **Programming**

The 9 Axes Motion Shield can be programmed with the Arduino software (download).

#### Examples

In the Arduino IDE you will find the following examples, go to File -> Examples of Arduino IDE, under NAxesMotion, there are 4 sketches for the use of 9 Axes Motion Shield:

- Accelerometer
  Example code to stream Accelerometer data
- BareMinimum
  Example code to describe the Bare Minimum
- Euler Example code to stream Euler data
- Motion
  Example code of a game to demonstrate the Any motion and No motion Interrupt features